Theoretical analysis of the characteristic impedance in metal-insulator-metal plasmonic transmission lines.

نویسندگان

  • Hamid Nejati
  • Ahmad Beirami
چکیده

We propose a closed form formulation for the impedance of the metal-insulator-metal (MIM) plasmonic transmission lines by solving the Maxwell's equations. We provide approximations for thin and thick insulator layers sandwiched between metallic layers. In the case of very thin dielectric layer, the surface waves on both interfaces are strongly coupled resulting in an almost linear dependence of the impedance of the plasmonic transmission line on the thickness of the insulator layer. On the other hand, for very thick insulator layer, the impedance does not vary with the insulator layer thickness due to the weak-coupling/decoupling of the surface waves on each metal-insulator interface. We demonstrate the effectiveness of our proposed formulation using two test scenarios, namely, almost zero reflection in T-junction and reflection from line discontinuity in the design of Bragg reflectors, where we compare our formulation against previously published results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propose, Analysis and Simulation of an All Optical Full Adder Based on Plasmonic Waves using Metal-Insulator-Metal Waveguide Structure

This paper proposes a full adder with minimum power consumption and lowloss with a central frequency of 1550nm using plasmonic Metal-Insulator-Metal (MIM)waveguide structure and rectangular cavity resonator. This full adder operates based onXOR and AND logic gates. In this full adder, the resonant wave composition of the firstand second modes has been used and we have ob...

متن کامل

Design and Simulation of a Metal-Insulator-Metal Filter Based on Plasmonic Split Ring

In this paper, a plasmonic filter made of a split ring, two U-shaped structures and two straight waveguides is designed and investigated. In the proposed structure, the split ring and U-shaped structures are situated between straight waveguides. Simulations are done based on FDTD method. Split ring, U-shaped structures and straight waveguides are made of air in the silver background. In the pro...

متن کامل

Modeling of Plasmonic Waveguide Components and Networks

We review some of the recent advances in the simulation of plasmonic devices, drawing examples from our own work in metal-insulator-metal (MIM) plasmonic waveguide components and networks. We introduce the mode-matching technique for modeling of MIM waveguide devices. We derive the complete set of orthogonal modes that the MIM waveguide supports and use it to apply the mode-matching technique t...

متن کامل

Analytical model for metal–insulator–metal mesh waveguide architectures

Metal–insulator–metal (MIM) waveguide mesh structures utilize X-junctions as power distribution elements to create interference and feedback effects, thereby providing rich device functionality. We present a generalized analytical model for MIM mesh structures by incorporating a modified characteristic impedance model for MIM junctions into the scatteringmatrix formalism. Themodified impedancem...

متن کامل

On the Variations of Shunt Characterization Technique of Decoupling Transmission Line for Millimeter-Wave CMOS Applications

Abstract Decoupling transmission line (TL) is a low characteristic impedance TL that is used for isolating DC and RF signals in millimeter-wave CMOS circuits. Low characteristic impedance makes the direct measurements difficult for characterization. A shunt characterization method is presented for the characterization. In this method, the S-parameters are calculated directly. Nevertheless, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics letters

دوره 37 6  شماره 

صفحات  -

تاریخ انتشار 2012